2024-25 LIVE PRECALCULUS CLASS SYLLABUS

Tuesdays: 11 AM-12 PM Central Time

Students Who Used Saxon for Algebra 2: Complete the Prep Course

Can I start working on my course before class starts?

Orientation: 2 weeks before class starts, parents will receive an orientation video that explains all the information in this syllabus, as well as how to use the eLearning course & Webex. To ensure you receive all emails, please add support@diveintomath.Zendesk.com to your contacts in your email account.

Required Supplies:

- Curriculum: Purchase the self-paced <u>eLearning Shormann Precalculus with</u>
 <u>Trigonometry</u>. While it can be purchased anytime, we recommend at least three weeks before classes start. If you want to start working on the course earlier, please read the article at the top of this page.
- 1-inch 3-ring binder with dividers and college rule or typing paper (typing paper is preferred), mechanical pencils and erasers
- Headphones or speaker (optional: microphone or you can message instead)
- Drawing Compass & Ruler OR GeoGebra App (recommended)
- Calculator: <u>Dr Shormann's Calculator Recommendations</u>
- PDF Binder: You need to be able to convert your handwritten homework into a digital pdf format with all pages in one PDF. I recommend an app called TurboScan (~\$10). You can use others but we only provide support for TurboScan. It can be purchased on the Apple App Store as well as for Android devices. Click here for step-by-step instructions on using the TurboScan app.

Assignments & Homework: The eLearning Course:

The eLearning course is where students complete daily assignments (video lessons and homework) and take quizzes and exams. Please read the <u>Teacher's Guide</u> for more information on using the Shormann eLearning course.

Sample weekly schedule for Precalculus:

<u>Day 1</u>: Do 1 lesson (2 hr).

<u>Day 2</u>: Do 1 lesson (2 hr).

<u>Day 3</u>: Do 1 lesson (2 hr).

<u>Day 4</u>: Do 1 lesson (2 hr)

Day 5: Online Class Meeting. Upload Homework and study for the quiz.

Tips for Success

- **Spread assignments out over at least 4 days.** Doing all the homework in two or three days will decrease fluency.
- Limit math to an hour and half to two hours per day. If more time is needed, work on math another 1-2 days.
- **Print and follow the steps on the Practice Set Instructions** (linked on the eLearning home page and Teacher's Guide).
- **Email me right away** if you feel overwhelmed or can't do your work. The longer you wait the further behind you will get and the longer it will take to catch up.

Format for Homework & Notes:

- Use typing paper.
- Fold your paper in half, forming two columns, and work problems vertically in both columns, front and back.
- \circ For problems in the Practice Set, grade your handwritten work with a red pen, and mark each problem with an X if incorrect or $\sqrt{}$ if correct.
- Rework all missed problems in red, writing the correct solution next to the missed problem.
- Put your name and lesson number on the top right corner of each page. Show your work. If you don't show work, you will not receive full credit.

Turn in Homework & Lecture Notes Before Class Starts

Your name and assignment number should be on the top right corner of the front page. Remember these things when uploading your homework:

- 1) **PDF is the only acceptable file format.** All homework for one week must be combined into one file, or "PDF binder". Not a "zip" file but a PDF file.
- 2) **don't exceed 5 MB per file.** In other words, the single PDF file containing all your work for that week must not exceed 5 MB in size. Resize your files if necessary.
- 3) See PDF binder in required supplies on page 3.

Live Class Meetings: Webex

We use Webex for live class meetings. Each week, you will receive a meeting invitation in your email, which will have a link to attend that week's class.

Class time will involve reviewing the week's lessons, taking a quiz and discussing the results, and answering questions you have. You can also email me during the week with questions at drshormann@gmail.com.

You can ask questions via chat or voice (headset with microphone required). Students use the text area to "chat" publicly with other students. Conversations will end when class begins. Any inappropriate conversations will not be tolerated and will be reported to your parents. If you have a question about a math problem or concept, you can send it to me as either a public or private chat message.

Grading

At the end of the year, the two lowest homework and quiz grades will be dropped. You will receive an evaluation after every quarterly exam. You can check your grade any time online. You will receive a certificate of completion if your average is 75% or greater.

- Homework is worth 20%.
- Class participation is worth 5%, and is based primarily off attendance, plus an obvious effort to respond when questions are asked.
- The four quarterly exams are worth 40%, and the in-class quizzes worth 35%.

Exams

If you have been completing your work at home **with integrity**, making 80% or better on most quizzes, and you follow the <u>How to Study for Exams</u>, you should do well on the quarterly exams.

Absences:

- Class Meetings are recorded.
- To allow for absences, at the end of the year I drop the two lowest weekly quiz grades and two lowest homework upload grades. If you are absent two times or fewer, then the work you didn't turn in will not affect your grade. Of course, you still need to do the work or you will struggle in the remainder of the course.
- I WILL NOT ACCEPT LATE WORK (but I will accept it early if you know you will be missing class on a certain date).

• PLEASE DO NOT ASK TO TURN WORK IN LATE. If you have to miss class more than two times and you are concerned about it affecting your grade, then please talk to me and we will work something out.

Conduct:

A good student will be attentive while I am talking, will come to class prepared and on time, and will treat everyone with respect and kindness. They will also meet the participation requirements described below. Also, do your homework with integrity! If your homework is consistently perfect, but you consistently fail the weekly quizzes, that is almost always a sign of cheating on homework, and you will be asked to drop the class. Strive to be a good student!

<u>Participation</u>:

Getting all your schoolwork done each week can be challenging, but I won't be doing you any favors by letting you get by with little or no homework completed for multiple weeks. At a minimum, each week you must turn in 2 homework assignments and complete the in-class quiz. If, for any 3-week period, you fail to meet the minimum requirement, and/or show little effort to complete more than the minimum requirement, you will be asked to drop the class.

<u>SAT/ACT tests</u>: Together, Shormann Math Algebra 1 and 2 cover all the content on **both** the ACT and SAT exams. Just like you take practice exams to help you prepare for the Shormann Math quarterly exams, we recommend that, prior to your SAT or ACT exam, you use some type of prep course containing at least 2 practice exams. Learn more about how to prepare for <u>PSAT</u>, <u>SAT</u>, and <u>ACT</u> here.

Should you take the CLEP Precalculus exam? Shormann Precalculus covers all the content on the CLEP Precalculus Exam. Students who make 90s or better on the quarterly exams and most quizzes are encouraged to take the CLEP Precalculus exam. This exam can earn up to three college credits, validates your transcript, and can boost applications in the scholarship and admissions application process. Thousands of colleges accept CLEP credits, but even if the college you attend does not accept them, passing a CLEP exam will show the college you plan to attend that you are capable of college-level work. We will provide our CLEP Professor Precalculus course (practice exams, review lessons and practice problems) to you for free if you want to take this exam.

How to read the Assignment Chart: The chart is set up as a weekly schedule that shows you what work is due each week. Make sure you complete everything in the "Lessons Due" column **BEFORE** you come to class on the Tuesday date listed. Make special note of the 4 quarterly exam dates. On these weeks, students study for their quarterly exam and take the exam during class. Start your new lessons the day after class.

2024-25 Weekly Assignment Chart: Live Precalculus HAVE YOUR BINDER, CALCULATOR, AND A PENCIL FOR EVERY CLASS!

Students Who Used Saxon for Algebra 2: Complete the Prep Course for Precalculus

3
3
2
16
19
22
25
te exam during class.
29
33
37
4 1
5
0
te exam during class.
54
58
52
56
59
72
75
e exam during class.
30
34
38
92
96
00
e exam during class.

Course Sequence

NOTE: Lessons 1-25 introduce fundamental rules and definitions covered in the 10 major topics of Shormann Precalculus, plus review of Shormann Algebra 2.

Lesson 1	Number I
Lesson 2	Ratio I
Lesson 3	Algebra I
Lesson 4	Algebra II
Lesson 5	Algebra III
Lesson 6	Geometry I
Lesson 7	Geometry II
Lesson 8	Geometry III
Lesson 9	Analytical Geometry I
Lesson 10	Analytical Geometry II
Lesson 11	Analytical Geometry III
Lesson 12	Analytical Geometry IV
Lesson 13	Analytical Geometry V
Lesson 14	Measurement I
Lesson 15	Measurement II
Lesson 16	Trigonometry I
Lesson 17	Trigonometry II
Lesson 18	Trigonometry III
Lesson 19	Calculus I
Lesson 20	Calculus II
Lesson 21	Calculus III
Lesson 22	Statistics I
Lesson 23	Statistics II
Lesson 24	Computer Math I

Lesson 25	Computer Math II
Lesson 26	Sum and Difference Two Cubes; Polynomial Division
Lesson 27	Game Playing with Logarithm Laws; Taking the Logarithm of
Lesson 28	Synthetic Division and the Remainder Theorem; Factor Theorem
Lesson 29	Nonstandard Absolute Value Equations; Finding Roots of Polynomial Equations
Lesson 30	Pascal's Triangle and the Binomial Theorem; Distinguishable Permutations
Lesson 31	Advanced Radical Equations
Lesson 32	Polar Form of a Complex Number; More Rate Problems
Lesson 33	Factorable Trig Equations
Lesson 34	Composite Functions; Products of Complex Numbers
Lesson 35	Inverse Functions; Inverse Logarithms
Lesson 36	Modeling of Linear Functions
Lesson 37	Even and Odd Functions
Lesson 38	Reciprocal Trig Equations; Advanced Trig Equations
Lesson 39	New Domains, Ranges, and Intervals after Operations; Decomposing Functions
Lesson 40	Operations with Numerical Representation of Functions
Lesson 41	The <i>t</i> -Test; Factoring Polynomials with Imaginary Roots
Lesson 42	Locus Definition of a Circle; Coordinate Geometry Proofs
Lesson 43	Operations with Graphical Representations of Functions
Lesson 44	Abstract Rate Problems
Lesson 45	Symbolic Transformations of Functions
Lesson 46	Graphical Transformations; Numeric Transformations
Lesson 47	Matrix Multiplication
Lesson 48	Nonstandard Representation of Linear Functions
Lesson 49	Locus definition of a Parabola
Lesson 50	Nonstandard and Other Representations of Absolute Value Functions
Lesson 51	Resolving Fractions into Infinite Series

Lesson 52	Modeling of Absolute Value Functions
Lesson 53	Nonstandard and Other Representations of Quadratic Functions
Lesson 54	Resultant Vectors: Force Applications
Lesson 55	Locus definition of an Ellipse
Lesson 56	Modeling of Quadratic Functions
Lesson 57	DeMoivre's Formula, Euler's Formula, and Complex Roots
Lesson 58	Infinity as a Limit; Special Limits
Lesson 59	Nonstandard and Other Representations of Square Root Functions
Lesson 60	Balancing Chemical Equations
Lesson 61	Modeling of Square Root Functions
Lesson 62	Nonstandard and Other Representations of Degree 3+ Polynomial Functions, Part I
Lesson 63	Nonstandard and Other Representations of Degree 3+ Polynomial Functions, Part II
Lesson 64	Nonstandard and Other Representations of Rational Functions
Lesson 65	Nonstandard and Other Representations of Exponential Functions
Lesson 66	Nonstandard and Other Representations of Logarithmic Functions
Lesson 67	Modeling of Exponential and Logarithmic Functions
Lesson 68	Graphing Reciprocal and Inverse Trig Functions
Lesson 69	Transformations of Trig Functions
Lesson 70	Modeling of Degree 3+ Polynomials
Lesson 71	Derivatives of Polynomials; Trig Equations of $n\theta$
Lesson 72	Transformations of Reciprocal Trig Functions
Lesson 73	Symbolic Forms of Piecewise Functions from Graphs
Lesson 74	Locus Definition of a Hyperbola
Lesson 75	Comparing General Forms of Conic and Linear Equations
Lesson 76	Trig Problem Solving
Lesson 77	Law of Sines
Lesson 78	Nonstandard Solutions for Conics

Lesson 79	Law of Cosines
Lesson 80	More with Inverse Trig Functions
Lesson 81	Sum and Difference Trig Identities
Lesson 82	Double-Angle, Half-Angle, and Tangent Sum and Difference Trig Identities
Lesson 83	Cramer's Rule; Gas Law Problems
Lesson 84	More Trig Problem Solving; Angular Velocity
Lesson 85	Partial Fractions; Recurrence Problems
Lesson 86	More Modeling of Trig Functions
Lesson 87	Non-Periodic Functions
Lesson 88	Integrals II: Sums of Rectangles
Lesson 89	Interest Rate, Savings and Debt
Lesson 90	Deriving formulas for infinite series
Lesson 91	Derivatives of sums and differences
Lesson 92	Integrals III: Definite Integrals
Lesson 93	Integrals IV: Indefinite Integrals
Lesson 94	Taking the 2nd Derivative
Lesson 95	The Product Rule for Derivatives
Lesson 96	The Quotient Rule for Derivatives
Lesson 97	The Chain Rule for Derivatives
Lesson 98	Using f' to Find Extrema
Lesson 99	Related rates
Lesson 100	Fundamental Theorem of Calculus