### Laboratory Workbook and Weekly Assignment Schedule

by

David E. Shormann, PhD

Digital Interactive Video Education

©2012 Digital Interactive Video Education

#### D.I.V.E. Earth Science Laboratory Workbook

Copyright 2011 Digital Interactive Video Education

You are allowed to make 1 copy of this workbook per family member completing this course.

ISBN 978-0-9819010-8-4

Published By Digital Interactive Video Education P.O. Box 1324 Magnolia, TX 77353

Printed in the United States of America

©2012 Digital Interactive Video Education

#### Table of Contents

#### DIVE Earth Science consists of the following four sections:

Week 1-8: Earth Science Basics Weeks 9-16: Flood Geology Weeks 17-24: Limnology and Oceanography

Weeks 25-32: Meteorology and Astronomy

| Week | 0                                   | Facts Practice         | Laboratory Activity                 | Page |
|------|-------------------------------------|------------------------|-------------------------------------|------|
|      | Using DIVE Earth Science            |                        |                                     |      |
| 4    | (watch video, read p. ii - iii)     |                        |                                     | ii   |
| 1    | 1.1-Science                         | Minerals               | 1.1-Scientific Method               | 1    |
| 2    | 1.2-Earth Anatomy                   | Earth Parts            | 1.2-Compass and Map                 | 6    |
| 3    | 1.3-Rocks and Minerals              | Topo. Map Symbols      | 1.3-Contour Lines                   | 10   |
| 4    | 1.4-Limnology and Oceanography      | Igneous Rocks          | 1.4-Study of Minerals               | 14   |
| 5    | 1.5-Meteorology                     | Metamorphic Rocks      | 1.5 - Study of Rocks                | 18   |
| 6    | 1.6-Astronomy                       | Sedimentary Rocks      | 1.6 - Study of Mud and Clay         | 23   |
| 7    | 1.7-Cartography                     | Facts Review           | 1.7- How to Find Gold               | 26   |
| 8    | Review Earth Science Basics         | -                      | -                                   | -    |
| 9    | 2.1-Creation: Earth Formation       | Geol. Time Scale       | 2.1- Using GPS                      | 29   |
| 10   | 2.2-Global Cataclysm                | Fossils                | 2.2- Earth Under Your House         | 34   |
| 11   | 2.3-Fossil Burial                   | Volcanism              | 2.3-Liquefaction and Fossil Sorting | 37   |
| 12   | 2.4-Receding Flood Waters           | Alpine Glaciation      | 2.4 - Canyon Formation              | 40   |
| 13   | 2.5-Ice Age                         | Continental Glaciation | n 2.5- Glacial Landscapes           | 44   |
| 14   | 2.6-Stasis (volcanoes, earthquakes) | Fault Block Mtns.      | 2.6-Tephra formation                | 47   |
| 15   | 2.7-Origins of the Universe         | Facts Review           | 2.7- Moving Earth's Crust           | 50   |
| 16   | Review Flood Geology                | -                      | -                                   | -    |
| 17   | 3.1-The Water Cycle                 | Dome Mountains         | 3.1-Thermoclines                    | 53   |
| 18   | 3.2-Other Aquatic Cycles            | Folded Mountains       | 3.2-Haloclines                      | 57   |
| 19   | 3.3-Waves, Currents, and Tides      | Canyons                | 3.3-Currents and Waves              | 60   |
| 20   | 3.4-Rivers and Streams              | Volcanoes              | 3.4- Erosion Control                | 65   |
| 21   | 3.5-Lakes and Reservoirs            | Rivers and Lakes       | 3.5- Building Reservoirs            | 68   |
| 22   | 3.6-Estuaries and Coasts            | Coastal Navigation     | 3.6- Delta Formation                | 71   |
| 23   | 3.7-The Sea                         | Seas, Gulfs, Oceans    | 3.7 - Hypoxia                       | 74   |
| 24   | Review Limnology and Oceanography   | y –                    | -                                   | -    |
| 25   | 4.1-Atmos. Heating and Cooling      | Cloud Types            | 4.1 - Atmos. Heating & Cooling      | 78   |
| 26   | 4.2-Atmospheric Moisture            | Weather Symbols        | 4.2 - Measuring Humidity            | 82   |
| 27   | 4.3-Global Climate Patterns         | Hurricanes and Torn.   | 4.3- Tracking Hurricanes            | 86   |
| 28   | 4.4-The Weather at Your House       | Weather Extremes       | 4.4 - Collecting Weather Data       | 90   |
| 29   | 4.5-The Solar System                | Planets                | 4.5 - Kepler's Laws                 | 95   |
| 30   | 4.6-The Sun and Moon                | Constellations         | 4.6 - Rockets                       | 99   |
| 31   | 4.7-Beyond the Solar System         | Facts Review           | 4.7 - Computer-based Astronomy      | 102  |
| 32   | Review Meteorology and Astronomy    | -                      |                                     | -    |
| ~ _  | S, and recently                     |                        |                                     |      |

## Laboratory Activity 1.1

## The Scientific Method

### Introduction

Welcome to Earth Science Laboratory! In today's lab, you will become familiar with the Scientific Method, and how you can use it to answer questions you have about God's creation.

#### How to Complete a DIVE Earth Science Laboratory Activity

- 1. Open your workbook to the appropriate page. Have a pencil and calculator ready.
- 2. Turn on your DIVE Video Lab and begin watching.
- 3. Watch the activity, pausing and rewinding as necessary. Fill in the activity book as you go.
- 4. Optional: Use your own equipment to complete the activity! You don't have to do this for every lab, but it is recommended that you try at least a few.

#### Steps of the Scientific Method

Describe each of the five parts of the scientific method:

Introduction

Hypothesis

Methods

Results

Discussion

#### Week 1

| ratory Equipment                                         |   |
|----------------------------------------------------------|---|
| Equipment used for containing substances                 |   |
| Equipment used for measuring                             |   |
|                                                          |   |
| Miscellaneous equipment                                  |   |
| ratory Safety                                            |   |
| What is the most dangerous chemical you will use?        |   |
| Where can you purchase / borrow it?                      |   |
| How do you mix acid and water?                           |   |
| What do you do if you get acid on you?                   |   |
| How can you protect yourself from acid spills during lab | 2 |

A very effective method for preventing accidents during lab is to \_\_\_\_\_\_the experiment before performing it.

### Doing a science experiment.

#### Introduction

Anything that takes up space and has mass is called matter. We can weigh an object to get an idea of how much mass it has. We can measure its volume to get an idea of how much space it takes up. Scientists measure masses and volumes of materials to determine their densities. The density, or mass per unit volume, of a material is helpful way for scientists to distinguish between two materials. It is one of the main measurements used to describe a material. For example, pure water (H<sub>2</sub>O)at room temperature has a density of about 1.0 g/mL. This is very different from pure lead (Pb), which has a density of about 11.3 g/mL. If you had 1 mL of each substance, the water would weight 1.0 g, and the lead would weight 11.3 g. Lead is probably the most dense substance in your rock collection.

In Laboratory Activity 1 you will attempt to answer the following question about rocks in your collection:

#### Which ore is the most dense?

**Hypothesis:** Determine the ores in your rock and mineral set. You should have a list that tells you which numbered specimens are ores. Based on what you learned in the introduction, together with any experience you have with ores, make an educated guess:\_\_\_\_\_\_.

#### Methods

#### Materials

**Equipment:** Ores from your rock and mineral kit (#30-45 if you have the same kit used in the video lab), digital balance, 100 mL graduated cylinder, cup, tweezers or pliers, calculator. **Chemicals:** Tap water

Procedure

For detailed explanation of procedure, please watch video lab. Record all measurements in the following table, or make a spreadsheet on your computer to automatically calculate density.

#### FIND MASS FIRST, THEN VOLUME

| Ore | Mass (g) | Volume (mL) | Density (g/mL) |
|-----|----------|-------------|----------------|
|     |          |             |                |
|     |          |             |                |
|     |          |             |                |
|     |          |             |                |
|     |          |             |                |
|     |          |             |                |
|     |          |             |                |
|     |          |             |                |
|     |          |             |                |
|     | 7        |             |                |
|     |          |             |                |
|     |          |             |                |
|     |          |             |                |
|     |          |             |                |
|     |          |             |                |
|     |          |             |                |
|     | -        | -           | ·              |

#### Week 1

Results: Calculate the density and record in the table on page 4. Round each answer to 2 decimal places.

#### **Discussion:**

- 1. Was your hypothesis correct? Why or why not?
- 2. Which ore had the second-highest density?

3. List at least three sources of error.

4. Considering the question answered in this experiment, list some similar questions that could be answered about density by doing a science experiment.

5. Why would a geologist be interested in knowing a rock's density?

# Laboratory Activity 1.2

# Using a Compass and Map

#### Introduction

In this lab activity you will learn to use a magnetic compass to determine the orientation of your home or school. You will then learn about maps and map scale, and combine your knowledge of compasses and maps to plot courses. You will check your work using Google Earth.

#### Methods

#### Materials

**Equipment:** Brunton Classic magnetic compass, drawing compass, ruler, computer with Google Earth, calculator

#### Procedure

For detailed explanation of procedure, please watch video lab. Record all measurements in the workbook.

#### Part 1: Using a compass

| Direction | Angle        |
|-----------|--------------|
| Name      |              |
| North     | 0°           |
| Northeast | 45°          |
| East      | 90°          |
| Southeast | 135°         |
| South     | 180°         |
| Southwest | 225°         |
| West      | <b>2</b> 70° |
| Northwest | 315°         |

Record a direction name and angle for questions 1-4.

1. The front of my home faces \_\_\_\_\_\_

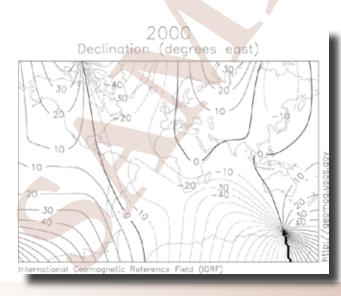
2. The back of my home faces\_\_\_\_\_

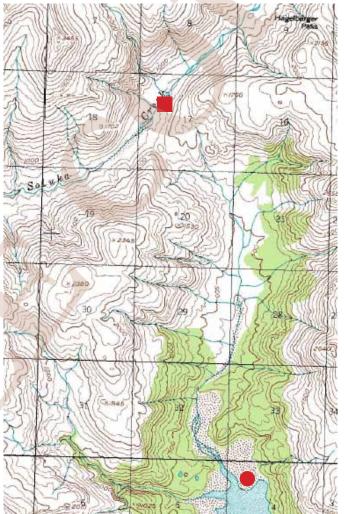
3. If I am facing my home, and I turn left (90°) and start walking, I will head\_\_\_\_\_.

4. If I am facing my home, and I turn right (90°) and start walking, I will head\_\_\_\_

#### Part 2: Map scale

- 1. What are some of the common map scales?\_\_\_\_\_
- 2. How many cm are in 1 km?\_\_
- 3. Why do you think there is a 1:100,000 map scale?\_\_\_\_\_
- 4. How many inches are in a mile?\_\_\_\_\_
- 5. Why do you think there is a 1:63,360 map scale?\_\_\_\_\_


### Part 3: Compass and Map


To the right is a section of the USGS 1:63,360 Katmai A-3 Quadrangle Map, published with revisions in 1977. The red square is where a hot spring was discovered by Dr. Robert F. Griggs, who explored the area after the eruption of Novarupta volcano in 1912. Estimate the distance between the red dot and the red square.

\_\_\_\_\_mi

If a group started at the red dot and walked in a straight line to the red square, what would their heading need to be?

Assuming a declination of 21.5° East, recalculate their heading to get a magnetic bearing.





#### Part 4: Using Google Earth

1. If you have not downloaded Google Earth, click here and download it now.

2. Type your home address into the Google Earth toolbar and press Enter. Record the latitude, longitude, and elevation of your home.

Latitude: \_\_\_\_\_\_ Longitude: \_\_\_\_\_\_ Elevation: \_\_\_\_\_

3. Type in "Dakavak Lake" and press Enter. Watch video lab to learn how to find distances using Google Earth.

distance = \_\_\_\_\_mi

heading = \_\_\_\_\_°

Compare your distance measured using Google Earth with your distance in Part 3. Calculate a percent difference.

% Difference = ((larger - smaller) / larger) x 100% = \_\_\_\_\_%

Subtract the declination from the Google Earth heading to get the magnetic bearing:\_\_\_\_\_\_°

How does this bearing compare to the magnetic bearing calculated on p. 8?

#### Part 5 (Optional): TerraGo plugin for Acrobat Reader and GEOpdf files

Find store.usgs.gov on the Internet. Select "Map Locator" and download the free TerraGo plugin. This allows you to use GEOpdf files.

Go back to "Map Locator" and under "SEARCH," type in Katmai A-3, then under "Search Type" select "USGS Map Name" and click "Go."

Click on the red balloon on the map, and download the smaller of the two files. Watch video lab and measure the distance you estimated in Parts 3 and 4 above.

| TerraGo distance = mi.                              |      |
|-----------------------------------------------------|------|
|                                                     |      |
| % difference between Parts 4 and 5                  | 0/_0 |
|                                                     |      |
| % difference between Parts 3 and 5                  | %    |
| Is the GEOpdf declination different than in Part 3? |      |
|                                                     |      |

# Laboratory Activity 1.3

### Contour Lines

#### Introduction

As you learn more about topographic maps, you are probably wondering what all those curvy lines are! Those are contour lines, and they are very helpful because they give you an idea of how steep the terrain is. The closer contour lines are together, the steeper the terrain. Contour lines are isopleths, or lines of equal measure. On topographic maps, isopleths are measuring lines of equal altitude above sea level. On bathymetric (nautical) charts, isopleths are lines of equal depth. In this lab activity, you will use a plastic model to learn how to make contour lines and draw a profile. Then you will use an actual topographic map section to make a profile. You will learn to make a profile using Google Earth.

#### Methods

#### Materials

**Equipment:** Contour line kit, ruler, water, cup or pitcher, dark-colored crayon, cookie sheet to set experiment in and prevent spills (optional), computer with Google Earth

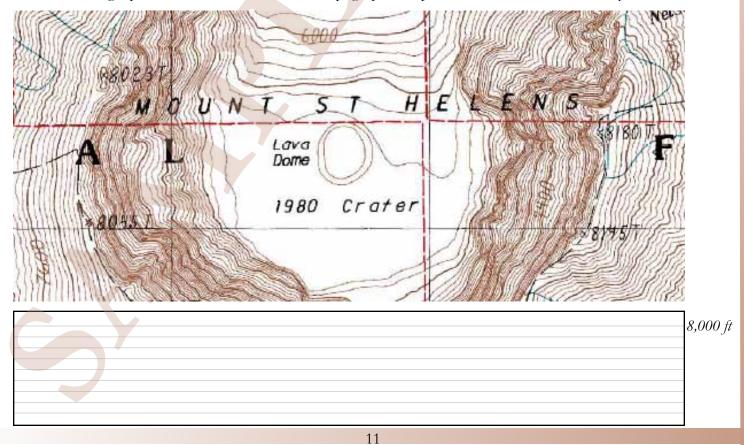
#### Procedure

For detailed explanation of procedure, please watch video lab. Record all measurements in the workbook.

#### Part 1: Making contour lines

Fill container in 0.5 cm increments

Each new water line is marking an isopleth. Mark its location with a crayon.


Measure highest point (last point submerged) and mark it with an "X"

DO NOT THROW AWAY THE CONTAINER! You need it for several other laboratory activities.

To the best of your ability, redraw a top view of your contour lines below. Then, make a profile through the highest point on your image. Use the grids as guides for placing your contour lines.



Part 2: Making a profile from a real 1983 USGS topographic map. Draw the 200 ft. intervals only.



Week 3

#### Part 3: Use Google Earth to make a profile

1.Fly to "Mount Saint Helens." Watch video lab to learn how to make a profile. Sketch your profile below.



- 2. In what ways is your Google Earth profile similar to your profile drawn in Part 2?
- 3. In what ways is your Google Earth profile different than your profile drawn in Part 2?

4. What might be some reasons for the similarities/differences in profiles between Part 2 and 3?

13 ©2012 Digital Interactive Video Education